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Abstract. The algebraic matrix hierarchy approach based on affine Liesl(n) algebras leads
to a variety of 1+ 1 soliton equations. By varying the rank of the underlyingsl(n) algebra as
well as its gradation in the affine setting, one encompasses the set of the soliton equations of
the constrained KP hierarchy.

The soliton solutions are then obtained as elements of the orbits of the dressing
transformations constructed in terms of representations of the vertex operators of the affinesl(n)

algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial
dependence on the KdV (odd) time flows and KP (odd and even) time flows which distinguishes
them from the conventional structure of the Darboux–Bäcklund–Wronskian solutions of the
constrained KP hierarchy.

1. Introduction. The algebraic cKP model

A large class of 1+ 1 soliton equations belongs to the so-called constrained KP (cKP)
hierarchy. Some of the most prominent members of this group are the KdV and the
nonlinear Schr̈odinger equations of the AKNS model. The cKP evolution equations
possess the familiar Lax pair representations with generally pseudo-differential Lax operators
which emerge naturally as reductions of the complete KP hierarchy Lax operators [1].
Conventionally, the cKP hierarchy is obtained from the KP hierarchy by a process of
reduction involving the so-called eigenfunctions. The eigenfunctions appear in the constraint
relations introducing a functional dependence between initially infinitely many coefficients
of the KP Lax operator. This scheme results in the pseudo-differential cKP Lax operator of
the typeL = LK+1+

∑M
i=18i∂

−19i , whereLK+1 is the differential operator of(K + 1)th
order, while8i,9i are the eigenfunctions ofL. In general,L possesses a finite number of
coefficients which enter the soliton equations and depend on all(t1, t2, t3, . . .) isospectral
time flows of the KP hierarchy. In the specialM = 0 case in which the cKP Lax operator
is a purely differential operatorL = LK+1 we encounter dependence on only some of the
original time flows of the KP hierarchy. The simplest example (K = 1,M = 0) is the KdV
hierarchy with only odd time flows present.

The soliton solutions for the cKP models have been found in [2] for the arbitraryK

andM = 1 case using the Darboux–Bäcklund technique. Generalization to an arbitraryM
is simple and was given in [3] (see also [4]). These solutions appeared in the Wronskian
form in terms of the eigenfunctions of the ‘undressed’L = ∂K+1 Lax operator.
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Here, we will present an alternative algebraic viewpoint of the constrained KP hierarchy.
In this setting the algebraic dressing methods will provide new soliton solutions which appear
to differ from the conventional form of the Darboux–Bäcklund–Wronskian solutions due to
a non-trivial mixing of the KdV-like versus KP time flows. This will be shown explicitly
in the example characterized byK = M = 1.

In an algebraic approach to the constrained KP hierarchy [5] the soliton evolution
equations emerge as integrability conditions of the following matrix eigenvalue problem:

L9 = 0 L ≡ (D − A− E) D ≡ I ∂
∂x

(1)

with the matrix Lax operatorL belonging to Kac–Moody algebrâG = ŝl(M + K + 1).
The integrable hierarchy is determined by the choice of gradation ofĜ. By varying the
Kac–Moody algebras together with their gradations one is able to reproduce from the matrix
hierarchy of equation (1) the nonlinear evolution equations of the cKP hierarchy.

We will be working with a simple setting in which the matrixE in equation (1) has
gradation 1 with respect to gradation specified by the vector [6]:

s = (1, 0, . . . ,0︸ ︷︷ ︸
M

, 1, . . . ,1︸ ︷︷ ︸
K

). (2)

We call this gradation an intermediate gradation as it interpolates between the principal
sprincipal = (1, 1, . . . ,1) and the homogeneous oneshomogeneous= (1, 0, . . . ,0). As is well
known the Wilson–Drinfeld–Sokolov [7–11] procedure gives, respectively, the (m-)KdV [9]
and AKNS [12, 13] hierarchies in these two limits.

Alternatively, the gradations can be specified by an operator:

Qs ≡
K∑
a=1

λM+a ·H 0+ (K + 1)d. (3)

Here λj are the fundamental weights andd is the standard loop algebra derivation.
Correspondingly,E stands for

E =
K∑
a=1

E(0)αM+a + E(1)−(αM+1+···+αM+K). (4)

It is a non-regular (forM > 0) and semisimple element of̂G.
The matrixA in equation (1) contains the dynamical variables of the model.A is such

that it has gradation zero and is parametrized in terms of the dynamical variablesqi , ri , Ua
andν as follows:

A =
M∑
i=1

(qiPi + riP−i )+
K∑
a=1

UM+a(αM+a ·H(0))+ νĉ (5)

whereP±i = E(0)±(αi+αi+1+···+αM), i = 1, 2, . . . ,M, and ĉ is a central element of̂G.

2. The Heisenberg subalgebra and the vertex operator

For a regular elementE in the conventional Drinfeld–Sokolov approach the isospectral
flows are associated with the Heisenberg subalgebra which can be identified with Ker(adE).
Here, due to the non-regularity ofE, the Heisenberg algebra is associated to the centre of
Ker(adE). It consists of the following three separate sets of operators.
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(1) A homogeneous part of̂sl(M), for i = 1, 2, . . . ,M − 1

K(n)i =
∑i

p=1pαp ·H(n)

Ni
Ni ≡

√
i(i + 1). (6)

(2) A principal part of ŝl(K + 1), for a = 1, 2, . . . , K

Aaa+n(K+1) =
K+1−a∑
i=1

E
(n)
αi+M+αi+M+1+···+αi+M+a−1

+
a∑
i=1

E
(n+1)
−(αi+M+αi+M+1+···+αi+M+K−a). (7)

(3) ‘A border term’

A0
n(K+1) =

√
M +K + 1

M
λM ·H(n) − K

2

√
M

M +K + 1
ĉδn,0. (8)

These relations provide a parametrization of the Heisenberg subalgebra in terms of
elements:

bN,a ≡ AaN=a+n(K+1) bN,0 ≡ A0
N=n(K+1) bN,i ≡ K(N)i (9)

wherea = 1, 2, . . . , K, i = 1, 2, . . . ,M−1. The Heisenberg subalgebra elements from (9)
enter the oscillator algebra relations (we putc = 1):

[bN,a, bN ′,b] = NδN+N ′δa,K+1−b a, b = 1, 2, . . . , K (10)

[bN,0, bN ′,0] = NδN+N ′ (11)

[bN,i, bN ′,j ] = NδN+N ′δij i, j = 1, 2, . . . ,M − 1. (12)

Next define the Fubini–Veneziano operators:

Q16i6M−1(z) = i
∞∑
n=1

K(n)i z−n
n

QM(z) = i
∞∑
n=1

A0
n(K+1)z

−n(K+1)

n(K + 1)
(13)

QM+a(z) = i
∞∑
n=0

Aaa+n(K+1)z
a+n(K+1)

a + n(K + 1)
a = 1, 2, . . . , K. (14)

The corresponding conjugated Fubini–Veneziano operatorsQ†(z) are obtained from (13),
(14) by taking into consideration the rulesK(n)†i = K(−n)i , (A0

n(K+1))
† = A0

−n(K+1),
(Aaa+n(K+1))

† = Aaa−n(K+1), as well asz† = z−1.
In [14] we found the step operators ofsl(M + K + 1) associated with the Cartan

subalgebra defined by the Heisenberg subalgebra (9). That in turn enabled us to find the
corresponding simple root structure forsl(M +K + 1) with intermediate grading.

Knowledge of roots and the Fubini–Veneziano operators is all that is needed to write a
compact expression for the general vertex operator in the normal ordered form:

V α(z) ≡ z 1
2

∑M
j=1(α

j )2 exp(iα∗ ·Q†(z)) exp(iα · q) exp(α · p ln z) exp(iα ·Q(z)) (15)

with the (M + K)-component root vectorα described in [14] and(M + K)-component
vectorQ having components described in (13), (14). The zero-mode vectorsp and q
only have firstM components different from zero according to(p)i = piθ(M − i) and
(q)i = qiθ(M − i). They satisfy relations [piqj ] = −iδij . Furthermore,pM is equal to
A0
n=0 from expression (8).

An explicit example of thesl(3) vertex will be given in section 4.
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3. The dressing technique and the tau-function

The dressing technique [15] deals with reproducing of the non-trivial partE + A of the
Lax matrix operator from equation (1) by the gauge transformations involving generators
of positive and negative gradings applied to the semisimple elementE:

E + A = 2E2−1+ (∂x2)2−1 (16)

E + A = (B−10)E(0−1B)+ (∂xB−10)(0−1B) (17)

whereB−10 contains positive terms and2 is an expansion in the terms of negative grading
such that2 = exp(

∑
l<0 θ

(l)) = 1+ θ(−1) + · · ·. From expressions (16) and (17) we obtain
two alternative formulae for the same termA of grade 0:

A = −[Eθ(−1)] or A = −B−1(∂xB). (18)

The termθ(−1) of grade−1 can be expanded as

θ(−1) =
M+K∑
a=M+1

θ(−1)
a E

(0)
−αa + θ(−1)

ψ E
(−1)
αM+1+···+αM+K

+
M∑
l=1

θ
(−1)
l E

(0)
−(αl+···+αM+1)

+
M∑
l=1

θ̄
(−1)
l E

(−1)
αl+···+αM+K (19)

where we included all possible terms of grade−1 according to (3).
Therefore

[Eθ,(−1) ] =
M+K∑
a=M+1

θ(−1)
a αa ·H(0) + θ(−1)

ψ (−(αM+1+ · · · + αM+K) ·H(0) + c)

+
M∑
l=1

θ
(−1)
l ε(αM+1,−αl − · · · − αM+1)E

(0)
−(αl+···+αM)

+
M∑
l=1

θ̄
(−1)
l ε(−αM+1− · · · − αM+K, αl + · · · + αM+K)E(0)αl+···+αM . (20)

Comparing the last expression with the field content ofA, as given by (5), we obtain
relations for the expansion parameters used in (19):

ν = −θ(−1)
ψ Ua = −θ(−1)

a + θ(−1)
ψ rl = −θ(−1)

l ε(αM+1,−αl − · · · − αM+1)

ql = −θ̄ (−1)
l ε(−αM+1− · · · − αM+K, αl + · · · + αM+K).

(21)

We now work with the representation ofA as given in equation (18). We split the grade-
zero elementB in a productB = B1B2 with B1 containing the grade-zerosl(M) elements
and

B2 ≡ exp
K∑
a=1

φM+aαM+a ·H(0) + ρ · ĉ. (22)

Accordingly, equation (18) becomesA = −B−1
2 B−1

1 (∂xB1)B2 − B−1
2 (∂xB2) andA can be

rewritten as

A = −
K∑
a=1

∂xφM+aαM+a ·H(0) − ∂xρ · ĉ +O(sl(M)) (23)

where O(sl(M)) contains all possible terms belonging to thesl(M) algebra.
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Comparison with (5) yields

UM+a = −∂xφM+a ν = −∂xρ. (24)

We define a family of the first-order differential matrix operatorsLN = ∂/∂tN − AN ,
N = 1, . . . . The hierarchy is then formulated in terms of the zero-curvature equations for
the Lax operators

[LN,LM ] = 0 (25)

expressing commutativity of the higher time flows. The zero-curvature equations imply the
pure gauge solutions for the potentialsAN :

LN = 9 ∂

∂tN
9−1. (26)

The starting point of the dressing method [15] is the vacuum solutionν = U = r = q = 0.
The correspondingL(vac) = D−E matrix Lax operator together with higher flow operators
LN,N > 1 for the vacuum solutions are expected to be recovered via (26) from9, which
is expressed entirely by the Heisenberg algebra associated with the centre of Ker(adE).
Explicitly, for our model

9 = 9(vac) = exp

(∑
N

tNb
(N)

)
(27)

with bN as given in components in (9) and with the sum inN including all non-negative
modes of oscillators appearing in equation (9).

We define the tau-function vectors as

|τ0〉 = 9(vac)h9(vac)−1|λ0〉 |τM+a〉 = 9(vac)h9(vac)−1|λM+a〉. (28)

They are associated with the constant group elementh and the highest-weight vectors
|λ0〉, |λM+a〉 such that

αM+a ·H(0)|λ0〉 = 0 αM+b ·H(0)|λM+a〉 = δa,b|λM+a〉 a, b = 1, . . . , K. (29)

Assuming thath allows the ‘Gauss’ decomposition of9(vac)h9(vac)−1
in positive, negative

and grade-zero elements we get for the tau-function vectors from (28) an alternative
expression:

|τ0〉 = 2−1B−1|λ0〉 |τM+a〉 = 2−1B−1|λM+a〉
2−1 = (9(vac)h9(vac)−1

)− B−1 = (9(vac)h9(vac)−1
)0 (30)

for a = 1, . . . , K. As before, we make a splittingB−1 = B−1
2 B−1

1 in (30) and notice that
B−1

1 |λM+a〉 = |λM+a〉 for B1 being an exponential ofsl(M) generators. InsertingB2 from
(22) we find

|τ0〉 = 2−1|λ0〉e(−ρ) |τM+a〉 = 2−1B−1|λM+a〉e(−ρ−φM+a). (31)

Denote

τ
(0)
0 ≡ exp(−ρ) τ

(0)
M+a ≡ exp(−ρ − φM+a). (32)

Accordingly, expanding2−1, as below equation (17), we find

|τM+a〉
τ
(0)
M+a

= (1− θ(−1) − · · ·)|λM+a〉 (33)
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and similarly for|τ0〉/τ (0)0 . We find by comparing with relation (21) that

rl = ε(αM+1,−αl − · · · − αM+1)〈λM+1|E(0)αl+···+αM+1
|τM+1〉/τ (0)M+1 (34)

ql = ε(−αM+1− · · · − αM+K, αl + · · · + αM+K)〈λ0|E(1)−(αl+···+αM+K)|τ0〉/τ (0)0 (35)

UM+a = −∂x ln(τ (0)0 /τ
(0)
M+a) ν = −∂x ln(τ (0)0 ). (36)

The multisoliton tau-functions are defined in terms of the constant group elementsh

which are the product of exponentials of eigenvectors of the Heisenberg subalgebra elements

h = eF1eF2 . . .eFn [bN, Fk] = ω(k)N Fk k = 1, 2, . . . , n. (37)

As seen from equation (37) for such group elements the dependence of the tau-vectors upon
the timestN can be made quite explicit

|τa〉 =
n∏
k=1

exp(e
∑

N ω
(k)
N tN Fk)|λa〉. (38)

The multisoliton solutions are conveniently obtained in terms of representations of the
‘vertex operator’ type where the corresponding eigenvectors are nilpotent.

4. The sl(3) example: solitons of the Yaijma–Oikawa hierarchy

We apply the above method to the particular case ofsl(3) with M = K = 1. From
equation (9) the surviving elements of the Heisenberg subalgebra are in this case:

b(2n+1) ≡ bN=2n+1,a=1 = A1
N=1+n·2 = E(n)α2

+ E(n+1)
−α2

(39)

b(2n) ≡ bN=2n,0 =
√

3λ1 ·H(n) − ĉ

2
√

3
δn,0 (40)

and they satisfy the usual Heisenberg subalgebra [b(k), b(k
′)] = kδk+k′ for both even and odd

k.
The structure of eigenvectors of Heisenberg subalgebra facilitates construction of

multisoliton solutions according to (37) and (38). In the current example we find that
the eigenvectors and their corresponding eigenvalues (in the notation of (37)) are

Eα̃1 =
√

2
∑
n∈Z

[z−2nE(n)α1
− z−2n−1E

(n)
α1+α2

]

ω
(2n+1)
α̃1

= z2n+1 ω
(2n)
α̃1
=
√

3z2n (41)

Eα̃2 =
∑
n∈Z

[
z−2n−1(E(n)α2

− E(n+1)
−α2

)+ z−2n

(
α2 ·H(n) − ĉ

2
δn,0

)]
ω
(2n+1)
α̃2

= −2z2n+1 ω
(2n)
α̃2
= 0 (42)

Eα̃1+α̃2 =
√

2
∑
n∈Z

[z−2nE(n)α1
+ z−2n−1E

(n)
α1+α2

]

ω
(2n+1)
α̃1+α̃2

= −z2n+1 ω
(2n)
α̃1+α̃2

=
√

3z2n. (43)

We now realize the above eigenvectors by the nilpotent vertex operators. The construction
involves the Fubini–Veneziano operators defined in terms of the Heisenberg elements as in
equations (13), (14):

Q1(z) ≡ i
∑
n∈Z

b(2n+1)z−2n−1

2n+ 1
Q2(z) ≡ q − ip ln z+ i

∑
n6=0

b(2n)z−2n

2n
(44)
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where the zero-mode momentump = b(0) = √3λ1 ·H(0)− ĉ/2√3 satisfies [q, p] = i. The
step operators from (41), (43) are then realized, from the algebra point of view, as vertex
operators via:

Eα̃1 ↔ E(1,
√

3)(z) =
√

2z3/2 : exp(iQ1(z)+ i
√

3Q2(z)) (45)

Eα̃2 ↔ E(−2,0)(z) = − 1
2 : exp(−2iQ1(z)) : eiπp (46)

Eα̃1+α̃2 ↔ E(−1,
√

3)(z) =
√

2z3/2 : exp(−iQ1(z)+ i
√

3Q2(z)) (47)

and similarly for the negative root step operators, with a change of sign ofi in exponentials.
Care has to be exercised in applying this correspondence within the setting of the Fock
space where the vacuum vector is|λ2〉, since〈λ0|Eα̃2|λ0〉 = − 1

2 while 〈λ2|Eα̃2|λ2〉 = 1
2, as

seen from expression (42). Similar consideration applies for the products ofEαi ’s vertex
operators such asE(−1,−√3)E(−1,

√
3) which produceE(−2,0).

Introduce the notation:

Vci,di (z) ≡ zd
2
i /2 : exp(iciQ1(z)+ idiQ2(z)). (48)

It is not difficult to establish the following correlation function:

〈λσ |9(vac)Vc1,d1(z1) . . . Vcn,dn (zn)9
(vac)−1|λσ 〉 = δ∑n

j=1 dj ,0
e
∑n
j=1 0cj ,dj (zj )

×
n∏
j=1

z
(−1)(σ+2)/2 dj

2
√

3
+ d2

j

2

j

∏
16i<j6n

(
zi − zj
zi + zj

)cicj /2
[(zi − zj )(zi + zj )]didj /2 (49)

for σ = 0, 2 and with

0cj ,dj (zj ) =
∞∑
n=0

cj t2n+1z
2n+1
j +

∞∑
n=1

dj t2nz
2n
j . (50)

When substitutingVcj ,dj (zj ) by Ecj ,dj (zj ) one encounters extra phases originating from the
Klein factor in equation (46) and from the character of the|λ2〉 vacuum as discussed in
equation (47). The latter gives rise to the factor exp((iπ/2)

∑n
j=1 cj ) for theλ2 correlation

function as verified on several examples.
Recall that for the problem in hand the Lax matrix operator from (1) withA from (5)

andE from (4) specifies to

L = D −
( 0 q 0
r U2 1
0 λ −U2

)
− νĉ (51)

whereλ is the usual loop parameter. In terms of the tau-vectors we have from (34)–(36)
the following n-soliton representation of the components of the Lax operator

r = 1

τ
(0)
2

〈λ2|E(0)α1+α2
|τ2〉 = 1

τ
(0)
2

〈
λ2|E(0)α1+α2

9(vac)
n∏
j=1

(1+ Ecj ,dj (zj ))9(vac)−1|λ2

〉
(52)

q = 1

τ
(0)
0

〈λ0|E(1)−α1−α2
|τ0〉 = 1

τ
(0)
0

〈
λ0|E(1)−α1−α2

9(vac)
n∏
j=1

(1+ Ecj ,dj (zj ))9(vac)−1|λ0

〉
(53)

U2 = −∂x ln(τ (0)0 /τ
(0)
2 ) ν = −∂x ln(τ (0)0 ) (54)

where

τ (0)σ =
〈
λσ |9(vac)

n∏
j=1

(1+ Ecj ,dj (zj ))9(vac)−1|λσ
〉

σ = 0, 2. (55)
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Using association between the step operators (41)–(43) and the vertex operators (45)–(47)
we can rewrite the step operators appearing in (52) and (53) as

E
(0)
α1+α2

= − 1

2iπ

∫
δz0V1,

√
3(z0) E

(1)
−α1−α2

= 1

2iπ

∫
δz0V1,−√3(z0). (56)

We now calculate the zero-curvature equations (25) [D − E − A∂tn − An] = 0 for
the first two non-trivial cases ofn = 2, 3. We expandAn =

∑n
i=0An(i) where the

index i in the parenthesis equals grading with respect toQs = λ2 · H 0 + 2d. We choose
A3(3) = E(1)α2

+E(2)−α2
andA2(2) =

√
3λ1·H(1) in order to ensure truncation of the expansion.

This method yields for the first non-trivial case (n = 2) the evolution equations

0= ∂t r + ∂2
x r + r∂xU2− qr2− U2

2 r 0= ∂tU2+ ∂x(rq) (57)

0= ∂tq − ∂2
x q + q∂xU2+ rq2+ U2

2q (58)

where we defined for simplicityt = √3t2. The evolution equations fort3 are

0= ∂t3U2− 1
4∂

3
xU2+ 1

2∂xU
3
2 + 3

4∂x(r∂xq − q∂xr) (59)

0= ∂t3r − ∂3
x r − 3

2∂xr∂xU2− 3
4r∂

2
xU2+ 3

2rU2∂xU2+ 3
2U

2
2∂xr

+ 3
2qr

2U2+ 9
4rq∂xr − 3

4r
2∂xq (60)

0= ∂t3q − ∂3
x q + 3

2∂xq∂xU2+ 3
4q∂

2
xU2+ 3

2qU2∂xU2+ 3
2U

2
2∂xq

− 3
2q

2rU2+ 9
4rq∂xq − 3

4q
2∂xr. (61)

These equations follow also from the conventional Sato equations∂tnL = [(L)(n/2)+ ,L]
applied to the scalar cKP Lax operatorL = (∂ − U2)(∂ + U2 − q∂−1r). We note here
that the simple reduction of the matrix Lax operator from (51) yields the scalar spectral
problemL1χ = λχ with the scalar Lax operatorL1 = (∂ + U2)(∂ − U2 − r∂−1q). Both
scalar Lax operators are related by a conjugation and the Darboux–Bäcklund transformation:
L1 = (∂ + U2)L∗(∂ + U2)

−1.
We now present few examples of the soliton solutions (52)–(55) satisfying the above

evolution equations.
(1) Soliton solution forn = 1. With h = (1+E−2,0(z1)) we recover the standard m-KdV

one-soliton configuration withr = q = 0 and

τ
(0)
0 = 1− 1

2e(−2xz1−2t3z3
1) τ

(0)
2 = 1+ 1

2e(−2xz1−2t3z3
1). (62)

(2) Soliton solutions forn = 2. For h = (1+ E−2,0(z1))(1+ E1,
√

3(z2)) we find τ (0)0

andτ (0)2 as in (62) but now withq 6= 0 and equal to

q = −
√

2z2e(t3z2
3+tz2

2+xz2)

(
1+ 1

2
e(−2xz1−2t3z3

1)

(
z1+ z2

z1− z2

))
/τ

(0)
0 (63)

while r = 0. Similarly, forh = (1+ E−2,0(z1))(1+ E1,−√3(z2)) we find r 6= 0 but q = 0.
For h = (1+ E1,

√
3(z1))(1+ E1,−√3(z2)) we find that bothq 6= 0 andr 6= 0:

τ (0)σ = 1+ (−1)(σ/2)2
z

1+σ/2
1 z

2−σ/2
2 e(xz1+tz2

1+t3z3
1+xz2−tz2

2+t3z3
2)

(z1− z2)(z1+ z2)2
σ = 0, 2 (64)

r =
√

2z2e(−tz
2
2+xz2+t3z3

2)

τ
(0)
2

q =
√

2z1e(tz
2
1+xz1+t3z3

1)

τ
(0)
0

. (65)
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(3) Soliton solutions forn = 3. As an example we take hereh = (1+ E−2,0(z1))(1+
E1,
√

3(z2))(1+ E1,−√3(z3)). We find

τ (0)σ = 1+ (−1)(σ/2) 1
2e(−2xz1−2t3z3

1) + (−1)(σ/2)2
z

2−σ/2
3 z

1+σ/2
2

(z2− z3)(z2+ z3)2
e(t3z

3
2+tz2

2+xz2+t3z3
3−tz2

3+xz3)

+ z
2−σ/2
3 z

1+σ/2
2 (z1+ z2)(z1+ z3)

(z2− z3)(z2+ z3)2(z1− z2)(z1− z3)
e(−2xz1−2t3z3

1+tz2
2+xz2+t3z3

2−tz2
3+xz3+t3z3

3)

(66)

r =
√

2z3e(−tz
2
3+xz3+t3z3

3)

(
1+ 1

2

e(−2xz1−2t3z3
1)(z1+ z3)

z1− z3

)/
τ
(0)
2 (67)

q =
√

2z2e(tz
2
2+xz2+t3z3

2)

(
1− 1

2

e(−2xz1−2t3z3
1)(z1+ z2)

z1− z2

)/
τ
(0)
0 . (68)

In the above examplesU2 and ν can be obtained from (54). We note that we only
kept the explicit time dependence on timestn with n 6 3, which was enough to verify the
evolution equations (57)–(61).

The characteristic feature of the above soliton solutions is that they mix exponentials
exp(

∑∞
n=1 tnz

n
j ) which represent a typical time dependence for the KP solutions with pure

KdV-like time dependence of the type exp(
∑∞

n=0 t2n+1z
2n+1
j ) involving only odd times.

The exception is provided by the pure KP type of solution in equations (64), (65), which
can also be obtained as a Wronskian arising from the Darboux–Bäcklund transformations.

Our soliton solutions in equations (66)–(68) do not coincide with typical Wronskian
soliton expressions valid for the constrained KP hierarchy. The relevant procedures to
obtain such soliton solutions for these class of models are derived in [3, 4] using a systematic
approach of the Darboux–Bäcklund transformations. This approach obtains the soliton tau
function for cKP hierarchy characterized by parametersK andM as a Wronskian:

W [f1, ∂
K+1
x f1, . . . , ∂

(K+1)N1
x f1, . . . , f2, ∂

K+1
x f2, . . . , ∂

(K+1)N2
x f2, . . . ,

fM, ∂
K+1
x fM, . . . , ∂

(K+1)NM
x fM ]

where all the functionsfi with i = 1, . . . ,M satisfy evolution equations:

∂fi/∂tn = ∂nx fi n = 1, 2, 3, . . . .

The solution of such equation is given by (up to some constants)fi = exp(
∑∞
j=1 z

j

i tj ).
Inserting these functions back into the Wronskian we clearly see that the Darboux–Bäcklund
solutions cannot have the same time dependence as the tau-function found in equation (66).

5. Conclusions

In this paper we have given soliton solutions for a cKP hierarchy. A special class of our
solutions has not, to the best of our knowledge, previously appeared in the literature. They
exhibit a non-trivial mixing of KP timestn with all indicesn’s and KdV-like timest2n−1

with only odd indices. From the point of view of intermediate gradation, such a mixture is
very natural. In fact, we are able to obtain pure KdV solutions, pure KP solutions (meaning
all times) and the arbitrary mixtures thereof, just by varying the constant group elementsh

of the dressing orbit.
As we have seen, these solutions do not fit into the conventional Darboux–Bäcklund

method which involves the Wronskian representation. Recall, that such a Wronskian is
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given in terms of the eigenfunctionsfi satisfying∂nfi = ∂nx fi for all n. This type of time
dependence only fits a subclass of our soliton solutions, namely those which are of the
pure KP type (meaning that alltn’s with all n’s are present without the non-trivial mixture
with KdV times). Based on studying many examples of these solutions, we believe that the
Wronskian method is able to reproduce that particular sub-class of our solutions.

It may be interesting to study other methods to investigate whether they can be adapted
to accomodate the class of the soliton solutions presented above.
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